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Fig. 1. PVI have developed special habits to cope with daily tasks, such as grocery shopping. We conducted user Journeys
walking us through their daily life to understand their habits and challenges, which revealed grocery shopping as a major
problem. We also conducted Structured Interviews at which we elicited requirements an assistive device must fulfill. Based
on our findings, we iteratively developed a prototype by constantly involving our target group. Finally, we evaluated the
performance of our device for the task of grocery item identification as well as in-the-wild pilot study to see how users would
actually interact in a supermarket.

People with visual impairments (PVI) experience simple tasks, such as grocery shopping, to be an essential difficulty. Although
the recent emergence of AI-technology has been dramatically improving visual recognition capabilities, the application to the
daily life of PVI is still complex and erroneous. For example, image recognition engines require a clear shot of the targeted
object and a contextual understanding of the information the user requires. In this paper, we aimed to understand the PVI’s
needs and their pain points in the task of identifying grocery items. Following a user-centered design process, we iteratively
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tailored a truly wearable assistive device in the shape of a bone-conduction headset to the needs of our target group. We
then evaluated the performance of our prototype, showing a success rate of 80% in recognizing grocery items in a controlled
environment. We conclude with a pilot deployment demonstrating how our device can support grocery shopping in-the-wild.

CCS Concepts: •Computer systems organization→Embedded systems; Redundancy; Robotics; •Networks→Network
reliability.
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1 INTRODUCTION
People with visual impairments (PVI) face increased challenges, particularly with object identification. This task
is crucial for simple and complex decision-making, such as distinguishing groceries or navigation in unknown
environment [11, 13]. In these scenarios, relying on assistance from sighted people is often inevitable.

However, for tasks, such as identifying groceries and purchasing them at the supermarket’s cashier, assistive
technology can significantly help, as shown by recent related works [9, 37, 64, 65]. Meanwhile, existing smart-
phones are able to empower PVI with assistive apps [34, 43, 52]. These apps become increasingly powerful but
yield the drawback of requiring an explicit interaction and creating an unfavorable hands-busy situation. We
can overcome this by integrating technology within our bodies [18] and making interaction more seamless [55].
Wearable assistive technology provides a solution and has been previously used to empower users with more
natural interaction [47, 49]. Still, these research-based wearable systems are not intended for use outside the
laboratory environment and worn all-day. They are often tethered to an external computational device and thus
not truly mobile.
In this research, we engage with PVI to better understand their interaction with the environment when it

comes to object identification, in particular with groceries. Further, we seek to gain an understanding of their
requirements for an everyday wearable assistive device. Based on these insights, we designed and developed an
embedded wearable device that aims to provide PVI with constant assistance tailored to their needs. By utilizing
a user-centered design process[50], we made several iterations of our design to improve the user experience.
Our prototype incorporates a micro-camera that looks at the user’s field of view, cloud artificial intelligence
algorithms that understands what the user is pointing at in the captured image, and a bone conduction headphone
that tells information to the user without blocking the ears (Figure 1 - Prototype). Evaluations were conducted
with a total of 16 participants to gain insights on the performance, the usability of our prototype, and to test the
robustness of our prototype. In summary, our contributions (following Wobbrock et al. [58]) are:

• artifact, an assistive bone-conduction headset that adds to the previous body of work on wearable assistive
devices for PVI. This includes 1) an understanding of the specific needs via user journey with 6 PVIs
and interviews with 5 PVIs; 2) detailed insights on our technical design decisions derived during the
user-centered iterative design process.

• empirical, an evaluation of our assistive device with a total of 16 different PVIs. This includes 1) pilot
study with 6 blind participants; 2) follow up study with 9 participants with a variety of visual impairments;
3) real-world pilot deployment with 1 blind participant.

2 RELATED WORK
Previous work identified and provided solutions for PVI’s various needs, including navigation [15], shopping [9,
21, 35–37, 44, 51, 65], and text reading [20, 29, 47]. In addition, there are many commercial solutions that support
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navigation [2–4, 27] and reading [16, 19, 57]. However, grocery shopping in unknown environments remains a
great challenge for PVI in which they often rely on sighted people [1, 3, 11, 63].

2.1 Shopping Solutions for PVI
A comprehensive study investigating PVI on the difficulties they encountered while taking photographs [11]
found that 28% are related to food or beverage items. Szpiro et. al [51] studied how PVI experience difficulties
in locating their desired product on the supermarket shelf. The difficulties experienced include identifying the
correct product due to similar product shapes, indecipherable labels due to various font types and sizes, and the
product’s location on the shelf. Based on these identified difficulties, some solutions have emerged. Trinetra [35]
is a phone-based system using barcodes and RFID tags to assist PVI in grocery shopping. ShopTalk [44] is a
wearable system with a barcode scanner allowing for product search using verbal directions. A smartphone
version of these applications was later developed for PVI users [33]. However, the usage of unique tags, such as
barcodes or QR codes, presents scalability limitations. Similarly, in certain scenarios, some information presented
on the product may not be available in the linked database.
PVI often use different strategies to identify a product, such as holding the product several inches from the

eyes, using a magnifying glass, estimating the product content by the shape and size of the box, or taking a photo
of the product with a phone to magnify it. Foo et. al [21] developed a grocery shopping assistant that located
products and guided PVI to the specific product location. She used computer vision and special hand gloves
for tracking, Wiimote for guidance, and 3D audio effects. Lee et. al [37] investigated various methods including
speech, non-speech, haptic vibration, a combination of speech and haptic, and a combination of non-speech and
haptic, for guiding PVI in acquiring items. Another used technique is crowdsourcing [1, 3, 11]. This strategy
requires assistance from a sighted user, namely, when trying to identify a product when grocery shopping, Yuan
et al. [64]. While commonly used, limitations such as time, scalability, price, and privacy exist. In developing
AiSee, we aimed to prevent limiting it to a specific database or a remote expert.

2.2 Manual Item Identification:
Before detailing how cameras assist with item identification, we will elaborate on current strategies for manual
item identification. A common strategy is to rely on tactile perception using only the hands. Generally, the hands
are a core physical interaction channel, as proprioception is well pronounced. Even without vision, PVIs can
distinguish two-dimensional and three-dimensional objects by holding and rotating them [39]. Gibson et. al calls
this exploratory tactile scanning "active touch" [22]. This strategy involves micro-motions to explore and measure
the object using haptic perception [39, 66]. However, this strategy alone is not suitable for current camera-based
item identification. This method usually relies on a single snapshot, in which the PVI has to hold the object still
while preventing occlusion.

2.3 Item Identification Smartphones:
Smartphones have shown to empower PVI with camera-based assistive applications, such as KNFB Reader [19],
Aipoly [41], Seeing-AI [43] or TapTapSee [5]. Although the recent emergence of AI-technologies has dramatically
improved visual recognition capability, it is still difficult to apply to the daily life of those with visual impair-
ments [25]. It is a known issue of the current vision system. The image recognition engine requires a clear shot
of the target object; however, this is difficult for visually impaired people. Kacorri [31] tried to make a custom
recognition engine to address this problem. Also, some studies like [30, 56] used audio feedback to correct camera
aiming for better image capturing. Targeting wanted information, such as text, can be difficult, since it is often
inappropriately framed within the captured image. The task difficulty increases dramatically with decreasing
vision capabilities [14]. Cutter and Manduchi further investigated different feedback modalities supporting PVI
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to orientate the phone correctly [14]. One of their most crucial findings is that in 59% of all provided guidance,
the user only required simple orientation correction to sufficiently frame the target. While the phone presents an
advantage being commonly used by PVI, limitations exist. Features, such as the touchscreen and ’voice-over,’ are
hard to operate [60] and generates a hands-busy situation. Overall, it is difficult to control the phone while in
motion.

2.4 Wearable Cameras:
Alternative approaches have emerged, such as mounting cameras onto the user’s body by using wearable
technology. This approach frees PVI’s hands, which is an important perception channel and simplifies the use
of technology. Therefore, different parts of the body have been explored for camera placement. For instance,
FingerReader 2.0 [9] places a camera on the index finger to provide assistance in shopping scenarios. Similarly,
HandSight and FingerReader [46, 49] explored the design space of finger-based text scanning.

Stearns et al. [49] developed and evaluated a prototype exploring how to continuously guide PVI’s finger across
text using different feedback conditions for a better user experience. Although wearing a camera on the finger
may feel natural, object occlusion and image framing were identified as critical issues. Another very popular
position to place cameras is the head, namely by incorporating it into a pair of glasses [48, 57, 61]. OrCam [57], a
commercially-available device, uses a small camera attached to the frame of a pair of glasses. The device can read
text, describe objects, and assist with facial recognition. Another device, Horus [17], is a system that consists
of a headset form factor with a camera connected to a waist minicomputer. It uses deep learning algorithms to
recognize objects that a user is looking at.

AiSee adds to the previous body of work on wearable assistive devices. By following a human-centered design
process, we found reasons to question the typical approach of using glasses augmented with a camera. PVIs
often mentioned in interviews experiencing stigmatization when wearing glasses. Therefore, we are proposing
an alternative form factor incorporating a discreet bone conduction headphone.

3 UNDERSTANDING THE TARGET GROUP
To understand our target group, we conducted User Journeys (Subsection 3.1), in which PVIs walked us through
their daily routines, revealing their habits and challenges. We followed this with a subset of Structured Interviews
(Subsection 3.2) that aimed to elicit requirements an assistive device needs for PVI to consider it usable. This
section documents our process and the resulting findings.

3.1 User Journeys - Daily Routine
A common design research tool used to identify the daily challenges of a certain user group is User Journeys. We
conducted a user journey with 6 PVI, (2 females and 4 males) aged between 21 and 72 years (M = 54.1; SD = 18.08).
All participants were randomly selected from a list of PVI provided by the local association of visually impaired.
Three participants were completely blind, two had retinal pigmentation, and one had diabetic retinopathy.

The interviews lasted for about 1 hour. We asked participants to imagine and describe their day upon waking
until sleep with as much detail as possible. The researcher took notes of the overall user journey. Figure 2 compiles
the user journey of one of the participants.

From the user journeys, we observed that most participants had a relatively active life. They completed multiple
activities, such as going to work, classes, visiting friends, etc. However, we observed that participants P1 (95%
vision loss, Male, 61 y/o) and P4 (Completely Blind, male, 72 y/o) had a slightly less active life compared to the
others. They stated they usually remained at home all day. We hypothesized that their family environment and
personality have a large effect on their daily routines. The participants we accessed and interviewed are those
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Fig. 2. Example user journey of P5, male of 58 years old with diabetic retinopathy

classed as early adaptors, which generally are better integrated into society. Nevertheless, the vast majority that
remains at home could potentially benefit even more from assistive technology.
All 6 participants reported facing difficulties with printed text, such as reading documents, letters, and the

news. The other four active participants also reported difficulties with fashion, namely identifying colors to
ensure their clothing matched. Except for P2 (Completely blind, Male, 21 y/o), who indicated that he uses private
taxi or family transportation, the remaining participants used public transport to get to work, school, etc., and
face difficulties mainly with stopping the vehicle (to get in and out).
All 6 participants reported facing multiple challenges with food, such as cooking, grocery shopping, and

knowing whether food is in good condition (i.e., not expired). The four most active participants reported going
grocery shopping and stated they faced difficulties in locating the products (mainly if they changed their location,
or it was an unknown environment), and identifying the details of the product, such as the brand, ingredients,
quantity, the expiration date, etc. While grocery shopping, participants reported being dependent on sighted
people. Two participants mentioned they immediately sought assistance from supermarket employees to help
them obtain specific items. Others reported going with a friend or asking strangers around the store to help them
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identify the different products. However, on certain occasions, participants preferred to not request assistance
for personal reasons or the nature of the purchase. In that situation, they face difficulties with identifying a
specific item they are looking for precisely. Sometimes they rely on guesses as to whether they are purchasing
the right product. This problem increases when there is a package similarity between items. For example, brand
differentiation with toothpaste may be difficult, given most tubes have similar shapes.

3.2 Structured Interviews - Requirements of an Assistive Device
Having identified some pain points presented by PVI, we wanted to learn how would they envision the require-
ments of an assistive device that fits their needs.
We recruited 5 participants, where one was blind, while the other 4 had low vision. The participants were

randomly recruited through the local PVI community at (Anonymous city). All participants had a full-time job.
All participants also had experience with current state-of-the-art assistive devices and were aware of on-trend
products in assistive technology field, such as KNFBReader [19], Orcam [57] or Seeing-Ai [43].
This study was designed to be a structured interview. We conducted concise questions in which participants

were to answer with dis/agree or provide a rating on a 5-point Likert scale. Our questions regarded system
functionality, form factor, camera location, system characteristics, and system interaction.

3.2.1 Daily Use of Existing Wearables: All participants were asked to rate how often they wore devices in 4
different locations, the head, wrist, chest, and finger. The ranking was based on a 5-point Likert scale (1: Never 5
Daily). Participants stated they used smartwatches, such as the Apple Watch, on a daily base (M = 5; SD = 0). 4
out of 5 participants reported wearing headset devices, such as headphones often (M = 4.8; SD = .45). Rings (M =
2.6; SD = 2.19) and chest-worn devices (M = 2.2; SD = 1.64) were worn on rare occasions.

3.2.2 Preference in Wearing Position: All 5 participants were asked to rate their preferred wearing location of a
camera-based assistive device. Four positions were to be ranked: head, finger, chest, and wrist. The ranking was
done by organizing the four different positions from most preferred (1) to least preferred (3). The position of the
head scored the most preferred 1 (M = 1.8; SD = 0.83), followed by the wrist (M = 2.4; SD = 1.1), the finger (M =
2.8; SD = 1.6), and the chest (M = 3; SD = 0.7). Only the position of the head scored a slightly positive result. We
suspect that a reason for this result is that participants previously reported wearing head wearable devices more
frequently, such as glasses and headphones. To clarify, we asked questions regarding their experience with these
further.

• Glasses: Only one of the 5 participants reported wearing glasses on a daily basis (M = 1.8; SD = 1.78). Other
participants mentioned that glasses often produce awkward situations. Another participant, P4, said: "When
I wear glasses, people expect me to have a certain eyesight, and that could be negative". P2 mentioned that
glasses obstruct his residual peripheral sight.

• Headphones: All 5 participants reported using headphones on a daily basis(M = 4.4; SD = 1.34). Participants
reported using standard off-the-shelf headphones. Four participants reported that they own and use a specific
type of headphones, bone conduction. Interestingly, bone-conduction headphones are not specifically
produced to assist PVI. Yet, all 5 participants perceived it as an assistive tool. They mentioned the usefulness
of bone-conduction headphones due to the non-obtrusive audio channel. They suggested using them while
doing outdoor activities, such as navigating with Google Maps. One of the participants criticized the quality
of audio, while another mentioned that it was slightly awkward for public use.

Finally, the participants were asked to indicate their preference between bone-conduction headphones and
glasses to integrate an assistive device. Interestingly, 4 participants, namely those that owned bone-conduction
headphones, stated their preference for them. Two participants indicated additional assistive features, such as
calling someone by pressing a button directly at the headphones.
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3.2.3 Envisioned System Capabilities: Although novel technology can provide powerful capabilities, there are
other important considerations, such as "Ease-of-use", "Discreetness", and "Wearing Comfort." The participants
were asked to rank these properties and the "Accuracy" based on their importance. Accuracy (M = 3.8; SD = .44),
followed by the ease of use (M = 2.8; SD = .44) received higher scores. However, open-ended conversations clearly
indicated the importance of "Discreetness".

4 PROTOTYPE DEVELOPMENT
In this section, we provide the technical details of our first iteration of the device. After developing the first
version, we took an iterative design approach with multiple PVI to improve its performance and usability. More
details can be found in Section 5.

4.1 Design Requirements
Informed by the previous interviews and related work [9, 25, 31, 47], we defined a subset of design requirements
that we followed to design AiSee.
Form Factor: A device that does not interfere with the daily life activities of the user (i.e. "wear and forget").

However, it needs to be available in a discreet way. Therefore, the device should be wearable and hands-free,
enabling the user to use it while performing other activities, such as talking or walking while carrying other
objects, such as the white cane. The apparatus should also not diminish any residual gaze the users may have.
Also, in case the user is wearing glasses, it should be able to adapt.

Camera Location: The location of the camera should enable the sensor to capture the proximity interaction area
of the user without the need for any implicit action. It is also crucial that AiSee is socially acceptable. Without
such acceptance, some users reported they would not use it. Therefore, AiSee camera location should be slightly
hidden so that others do not target the users as a handicap. However, at the same time, the camera should capture
the ROI (region of interest) of the product, while keeping a low level of occlusion. Finally, the camera should
have a static location and not shake to extract precise and sharp images.
Processing: AiSee should be able to provide an audio description of any presented item that the user wants

to identify. Consequently, the recognition should be based on the features of the item, such as text, color, or
shape, rather than training a specific subset of objects. Image processing should be done as fast as possible and in
real-time, if possible. The feedback provided to the user should contain enough information for the user to make
the right decision about the specific item, while not overwhelming them. Finally, if possible, the processing and
power consumption should be low for the device to last a full day with one charge.
Usability: Following the interview insights on the system capabilities, AiSee must enable the users to access

the information in a fast and discreet manner. With a natural and straightforward interaction, the user should be
able to extract any desired information. The device should be easy to use and discreet to the others.

4.2 Overview System Architecture
The overall interaction flow of the system is a similar approach used in image recognition systems such as Phone
Applications [19, 43] or wearable devices such as OrCam [57] (1) The system, by default, is on standby mode to
keep low power consumption and waiting for the user to (2) trigger the recognition system. Once the system is
triggered, an (3) image is captured. Then, an AI algorithm (4) extracts the region of interest, which is defined by
where the user is pointing at. Finally, (5) features from the selected area are extracted, elaborated on a sentence,
and (6) delivered through audio to the user.
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Fig. 3. Overview of the first iteration of the AiSee wearable apparatus. The image shows all the different parts that were
integrated inside the headset and their location

4.3 Hardware Overview
The AiSee prototype incorporates three key hardware components: (1) a camera, (2) a processing unit, and (3) 2
bone-conduction transducers.
The processing units consist of an ARM mid-range SoC (Qualcomm Snapdragon 410), quad-core Cortex-A53

with a frequency of 1.2GHz, and 2GB of ram1. The camera model selected is a Sony IMX135, which has 13
megapixels of resolution, and the lens provides a field of view of 79.8° with autofocus capability. MIPI CSI
interface is used to communicate with the camera sensor. The prototype embeds a WiFi and a Bluetooth module
and connects to the cloud through WiFi. A small battery of ~ 400mA is used to power the system. The electronics
are placed on the right side of the headset, while the battery is located on the left side (see Figure 4).
With this small and light battery, 4 hours of battery with only a single charge is possible. AiSee power

consumption strategy is on the software side. The device is on standby mode over 90% of the time, waiting for
the user to trigger recognition. However, when the device is interfacing with the camera and pre-processing
the images, we observe significant peaks of current (~ 500mA - 1A) for periods of 2-3 seconds. Also, the highest
and most significant power consumption spikes are found when the system is booting the OS (Android), where
we observe current peaks of up too 2 A. Although the electronics of the system are designed to handle these
currents, we observed some complexity in heat dissipation management. During regular usage, the users did not
report facing any problems with heat. However, some users reported being slightly uncomfortable during the
booting process of the system. Thus, we slightly improved this problem by relocating the electronics and placing
the SoC (which is the one that produces more heat) further from the users’ skin. Future versions should have the
casing developed from conductive materials such as aluminum for a passive dissipation of heat.

4.4 Form Factor Development
During the design of AiSee, our primary motivations were to achieve a form factor that did not interfere when the
user performed other activities and prevent others from targeting the user as handicapped. During the interviews,
we found that users were using standard bone-conduction headphones, which are commonly found in consumer
electronics (e.g. Aftershokz2 to interact with phone applications and perform tasks, such as GPS navigation.
Following this trend, AiSee adopts this form factor and embeds a small camera to perform visual recognition
tasks. The three main design requirements related to the form factor of AiSee were: (1) compact integration

1www.varacite.com
2www.aftershokz.com/
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Fig. 4. Different iterations of the device form factor, (A) - Functional prototype, which housed all the electronic components,
but was fragile and bulky. (B) - Modular prototype, which enabled testing of the tightness of bone-conduction headphones
and adjustment of the camera location and orientation. (C) - Ergonomic prototype, where the components were re-positioned
to move the center of mass between the ears. The user still felt uncomfortable for prolonged usage. (D) - Compact prototype,
where the size and weight of the Headset were reduced with a smaller PCB design. The material of the Headset was changed
to increase flexibility, audio performance, and comfort.

of hardware; (2) appropriate tightness of the pieces and pressure to ensure audio quality of bone conduction
without being too tight and uncomfortable; (3) camera-mounting that provides a right field of vision without
being unobtrusive. Figure 4 shows the form factor iterations and the details appear on each of the caption.

To get the right amount of pressure and a comfortable form factor, we printed the parts with different patterns
using 3D printers. The two main casings for the electronics and batteries were printed using a multi-material
Object 500 3D printer. While the band that goes around the head was 3D printed with a filament printer, a
MarkerBoard was used following horizontal patterns. This approach enabled us to adjust the pressure that was
applied to the users. Furthermore, we also used a hot gun to thermoform some parts of the prototypes to create
better fits for the users. We developed and assembled a total of 10 of these prototypes, which we later used to
evaluate the performance of the device.

4.5 Camera Properties (Angle & Placement)
The two primary considerations for camera placement were the discreetness of the device (not noticeable by
others) and the field of view of the camera (not occluded by the wearer herself/himself). Using prototype (B)
(Figure 4B) and its modular feature, we evaluated the relation between camera angle (5°, 10°, 15°, 20° and 25°),
target distance (200 mm, 400mm, 600 mm, and 800 mm), and camera view. As shown in Figure 5, a researcher
wore the prototype and pointed at a mark (X shape, 40mm x 40mm) on the wall (height 150mm) with the right
hand. This action was repeated for each of the 20 combinations of angle and distance. The views from the camera
were recorded and analyzed.

It can be observed that 15 to 20 degrees are more suitable for shorter distances, and 5 to 10 degrees for longer
distances. For our system, a 15-degree angle was selected, since the finger is closest to the center of the camera
view for shorter distances.
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Fig. 5. The table shows the correlation between the angle of the camera and occlusion. The camera should be placed on a
discreet location, while still having excellent visibility of the target.

4.6 Bone Conduction Transducers
The selection of bone conduction transducer has direct implications on the audio quality. During the design of
AiSee, multiple transducers were considered and evaluated. The main characteristics considered were the price,
the sound quality, and the form factor. The final design of AiSee incorporated two transducers BM230, set up on
a stereo configuration. We used the existing internal power amplifier of our selected SoC. This uses a classic AB
audio amplifier that can deliver up to 3W on transducers of 8 Ohms.
During our initial iterations, we used high-end transducers (ppu > USD 100). However, the users reported

that the audio quality was poor. They had problems with hearing the audio clearly. We observed that the main
problem was in the assembly methodology, where we attempted to embed the transducers in the casing and hold
them by mechanical properties. This approach made the sound present a high distortion ( the users described as
"metallic sound."). After some iterations and evaluation, we improved the quality by simply gluing the transducer
to the casing, reducing the inner casing space, and tightening the enclosure by .5 mm. This solution substantially
improved the quality of the audio and enabled us to use USD 3 transducers. When the transducers worked at the
maximum level (0.5W /88dB = −3DB), AiSee generated a ticklish sensation, which some users liked, but others
found it uncomfortable. At the same time, it reduces the privacy of the system, since those in the user’s vicinity
may be able to hear some audio.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 119. Publication date: December 2020.



AiSee: An Assistive Wearable Device to Support Visually Impaired Grocery Shoppers • 119:11

Fig. 6. Bluetooth wearable ring used to trigger the headset. The ring contains a custom-made FPCB with a micro switch and
a Bluetooth Low Energy IC (Nrf51822)

4.7 Software Design
The software system adopts a hybrid approach to maximize battery life and flexibility in deployment. The
embedded system runs Android (Lollipop 5.1.1) as OS. The system connects to a peripheral board that integrates
three different switches to trigger a recognition event (see Figure3). When a recognition event is triggered, an
image is captured and pushed to the cloud. On the cloud, a Java-based server analyzes the image by using two
algorithms in series. First, it extracts the object’s region of interest (see section 5.2), and second, it extracts the
features of this one. Second, we use Google Cloud Vision API [6, 54] to extract further features (see section 5.2).
As output, the system elicits textual descriptions of the scene in three main categories logos, text, and general
object characteristics (e.g., book, electronics, etc.) and returns the information in plain text to the system. Finally,
the generated answer is sent back to the embedded device, which organizes and filters the information (see
section 5.2), before converting this one into audio with the Google text-to-speech engine.

5 PROTOTYPE ITERATION
Once we had an initial version of the device (see Figure 3), we performed an iterative design approach [50] to
identify potential problems and improve its usability. The iterations were done throughout multiple evaluations
with a subset of 6 PVI aged between 22 and 61 years (M = 45.83 SD = 19.75; 5 male and one female) from
the local association of PVI at anonymous city The participants participated in one or multiple one-on-one
interviews, which helped evaluating and providing feedback about the device over a total period of 6 months.
Not all participants were part of every iteration. Also, one of the participants became a member of our research
institution for a period of 3 months and provided extensive feedback.

5.1 Iteration 1 - Fast and Easy Interaction
The first version of AiSee contained a small subset of triggers on the left side of the headset, which the user
needs to press to trigger the recognition. After evaluating it with two participants, we quickly observed that
the interaction seemed slightly confusing for the users. They had to hold the item in one hand while pressing
the button with the other hand. Even though the interaction itself was hands-free, the user had to perform an
explicit action, namely raising their hand to the headset and press the button.
To keep the interaction as unobtrusive and discreet as possible, we embedded a subtle switch on a wearable

ring (see Figure 6) worn at the index that would trigger the recognition process. Simply pressing the switch
using the thumb is a minimal microgesture [59] that potentially enables a reflexive interaction [42] and thus
seems to be an optimal input technique. This thumb-to-index gesture can be considered as hands-free and may
be performed with little effort in parallel to other real-world tasks [10]. The device consisted of a custom-made
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Fig. 7. Bottom row: original images extracted from the camera after identifying the gesture. Top row: croped images after
extracting the Region of interest.

FPCB (Flexible printed circuit), a micro switch, and a Bluetooth Low Energy IC (Nrf51822), that communicates
with the headset (see Figure 6). The device used a 10mA curved battery to power the system. The battery lasts for
up to 30 days when fully charged. The ring charges using an external apparatus, a ring casing. The casing was
3D printed in two parts by an Object500 printer. The Bluetooth communication between both devices is based
on the event delivery of a status change. We did face some complications with the communication between the
ring and the headset due to reduced signal transmission. We improved the communication by re-arranging the
2.4GHz headset antenna-FXP831 (see Figure 3) to the front of the headset instead of the back.

5.2 Iteration 2 - Information delivery - Software AI
AiSee relies on AI algorithms to extract as many features as possible from the captured image and to generate a
sentence that can then be delivered through audio to the user. In the beginning, our goal was to provide as much
information to the user as possible, with the hypothesis that he or she would extract the relevant information
and thus make the right decision. Therefore, to extract as many features as possible, and to make the system less
specific, we decided to use a state-of-the-art general propose AI cloud service API3.

Region of Interest: To reduce the unrelated information and center the recognition around the item, we decided
to crop the image and remove the areas without the object before sending it to the AI engine. This (i) reduces
the chances of identifying irrelevant features from the surroundings, and (ii) extracts more information from
the object the user is targeting. The gesture of point at the bottom left corner of the item was introduced to
indicate to the system the ROI (see Figure 7 bottom row). A customized Single-Shot Detector (SSD) [38] model
was trained to detected the hand pointing and extracted its coordinates. The coordinates were later used to crop
the image vertically and horizontally, starting from the index finger (see Figure 7 top row). Finally, the cropped
image was then sent to the AI engine. The SSD model was done by labeling over 100 pointing images [32, 53].
We used TensorFlow 1.21 object detection API [23].

3https://cloud.google.com/vision
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Information Filtering: The used AI service extracted different features from the image (see Figure 8), related to
the text, colors, Logos, object classification, web search, and others. However, while evaluating the device with
participants, we observed that providing excessive information that is not 100% relevant for the recognition (e.g.,
junk food, drink, etc.), produced confusion, and made the users lose their concentration on the outcome. While
the system provided the user with the exact information required in some locations, the user could not extract
it. Instead, he or she remembered the higher class results, which are less useful for the recognition. Based on
these observations and related work [9], we decided to (1)organize the information to be more relevant for the
users. From our observations, this includes logos, text, and categories. Then, we also (2)implemented word filters
to remove layers of information from the categories section that produced confusion to the user, such as "junk
food," "drink," "can," "finger or arm," etc. As a result, we were able to reduce the loop time, and the users seemed to
improve their performance. However, we envision that future work should focus on understanding the overall
problems faced in these scenarios.

5.3 Iteration 3 - Sound UX Notification
During the evaluation, participants suggested that a maximum number of reasonable attempts they will perform
to recognize an item are 3. "In maximum three tries, the application needs to accomplish its goal, e.g., identifying the
product. Otherwise, it leads to frustration.". Also, we observed a trend where users preferred to perform multiple
quick iterations that contained less information rather than slow iterations that contained lots of information.
I.e., if it is slow and the user pointed on the wrong side of the object, that will lead to frustration.
Also, we observed that when the image contained a large amount of information, such as a document or the

ingredients of a food product, the processing time of the image was long. The slowest interaction we faced was
when a PVI attempted to read a full printed document. Due to the amount of information contained in the image,
the system took about 5.2 seconds to generate an answer. Although the participant understood the system could
take longer to provide the image, the lack of feedback generated uncertainty. The user kept triggering the device
without waiting for a response. To improve the usability of the system, we decided to add notification sounds.
The notification sound is played when (0) the system is booting (guitar sounds), (1) when the image is captured
(camera shutter sound effect), (2) when the image is being processed (ultrasound radar sound effect), and (3)
when the result is received (notification sound effect). The sounds were extracted from a UX library. We received
positive feedback from users when adding this essential improvement for the user experience.

6 EVALUATION
After a long iterative process, we decided to perform a user evaluation aiming to understand the performance
and usability of the apparatus.

Table 1. Participants involved during the pilot Evaluation. Demographic information, percentage of items identified correctly
(%Success Rate), the average average number of shots per task

Case Age Gender Visual Acuity WHO Score %Success Rate (M) N-shots SD
P1 31 Male Light Blindness (cat=5) 75% 3.37 1.61
P2 25 Male No Light Blindness (cat=6) 69% 3.05 1.59
P3 42 Male No Light Blindness (cat=6) 80% 2.8 1.56
P4 39 Male Light Blindness (cat=5) 87% 3.17 1.61
P5 33 Female Light Blindness (cat=5) 79% 3.10 1.56
P6 32 Male No Light Blindness (cat=6) 91% 3.17 1.58
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6.1 Pilot Study
We initially began with a pilot study to get some first impressions on the device performance, task performance,
and usability problems. We invited 6 participants (5 male, 1 female) aged between 25 and 42 years M = 33.66
(SD = 6.05) individually for five sessions lasting an hour each. All 6 participants were completely blind (cat. 5
& 6 [7]), with only 3 participants capable of spotting lights and bright spots. However, the cause of blindness
differed between participants, such as Birth or Uveitis (see Table 1).

Motivated by our previous user journeys, we defined the following tasks. The user was asked to differentiate
between similar items (i.e. the researcher asked questions such as: "Is this a can of coca-cola, red-bull, or sprite?").
In each session, we asked the participant to perform 27 recognition tasks with 9 new products (types: 3 boxes, 3
cans, 3 bags) × 3 repetitions. The grocery items were given in a random order and orientation. By the end of the
5 sessions, each participant had performed 135 recognition tasks with a total of 45 different items. The success
rate was calculated as the percentage of correct answers. Furthermore, we collected the number of shots (images
taken) the participant performed before providing the answer. Participants were allowed to trigger the device
multiple times, but could only provide one answer per item. Also, the researcher did not inform the participants
if the provided answer was correct or incorrect. Additionally, at the end of sessions 1, 3, and 5, participants
completed a standardized task load questionnaire (NASA-TLX [26]) and a standardized usability questionnaire
(SUS [12]). One participant missed session 5 due to personal reasons.

Fig. 8. Subset of images that show the different challenges faced to provide reliable feedback. Each of the instances contains
its original picture and the ROI picture. Also, at the bottom of each image, there is the answer given by the algorithm before
applying a filter.
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6.1.1 User Performance. The overall success rate of the presented task was 80%, with an average number of shots
of M = 3.1 (SD = 1.58). We observed a correlation between success rate and object shape. Boxes (86% success) had
the highest success rate, compared to bags (79%) and cans (76%). Throughout the study, we saw that inaccuracies
are rooted in the targeting style, particularly when a participant could not estimate where potential information
was located on the object, such as with cans. Further evaluations should explore a larger variety of items, with a
more generic and complex task. We did not observe a learning effect throughout the five sessions in terms of
performance, suggesting that it is simple enough to use without much practice.

6.1.2 Task Load. The following average scores were gathered from the pilot study: Effort: M = 15.08 (SD = 7.75 ),
Mental Demand: M = 11.45 (SD = 10.5), Temporal Demand: M = 9.88 (SD = 7.47), Performance: M = 9.04 (SD =
6.42 ), Frustration: M = 4.79 (SD = 6.62), Physical Demand: M = 3.74 (SD = 5.83). These scores represent the break
down of the weighted TLX score. i.e. (XRatinд × XW eiдht ÷

∑
Weiдht ).

Overall average TLX score was ~ 54. The task load seems consistent throughout multiple sessions. The results
of the NASA TLX inform that level of Frustration, and Physical Demand were relatively low compared to Effort,
Mental Demand, and Temporal Demand. These results should be taken into consideration for future usability
improvements.

6.1.3 Usability. We observed an increment on the SUS scores as the sessions progressed, indicating that users
became familiar with the device. Session 1: M = 52.5 (SD = 15.08), session 3: M = 67.08 (SD = 6.78), and session
5: M = 68.75 (SD = 10.89). Following Brooke [12], our system can be classified as usable after the participant
underwent training for five sessions.

6.1.4 Image Quality: The collected images were organized based on the Levenshtein distance [28] between the
algorithm answer and the list of original products. A researcher then manually annotated a subset of 150 images
from the list (50 top, 50 bottom, 50 middle). Figure 8, which summarizes the different image quality challenges.

6.2 User Study
Informed by the pilot study, we proceeded to evaluate AiSee. Based on our results we altered the study design as
follows:
(1) Single session. For practical considerations regarding the length of the user study and the absence of a

learning effect, we decided to shorten the evaluation to a single session.
(2) Participants with different eye conditions. The pilot study had participants with homogeneous eyesight

(totally blind). This study considers low vision individuals and explores how they would benefit from AiSee.
(3) A greater variety of items, especially round shape items, which the pilot study demonstrated had lower

accuracy.
(4) Instead of a multiple choice task used in the pilot study, participants had to describe the item and volume

and/or weight of it.

6.2.1 Study Design.
Apparatus: The apparatus used is the same as described in the iterative design process. However, to extract more
insights and speed up the user evaluations, we developed a mobile phone application enabling the researcher to
control the system during the evaluation. With this tool, the researcher, at any given time, can set-up the WiFi
network of the device, adjust the audio volume, and adjust the speed of the text-to-speech engine. Additionally,
the app can visualize what the camera is seeing and visualize the results extracted from the image processing
algorithm. Finally, if needed, the researcher can also remotely trigger the recognition.
Informed by the pilot study, and to provide more consistent and clear information to the user, we decided

to modify the generated feedback. Instead of providing the text following the physical orientation (i.e. top to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 119. Publication date: December 2020.



119:16 • Boldu et al.

Table 2. Details of the participants involved during the user Evaluation and their SUS score.

Case Age Gender Impairment Acuity WHO Score SUS

P1 63 Male Birth Blind No Light Blindness (cat=6) 62.5
P2 64 Female R Blastoma No Light Blindness (cat=6) 70
P3 37 Male Birth Blind Light Blindness (cat=5) 65
P4 72 Male R Pigmentosa R=0 L=Light Blindness (cat=5) 57.5
P5 32 Male Stargardts L/R=2/60 Blindness (cat=4) 82.5
P6 68 Male Glaucoma L=0 R= 6/120 Blindness (cat=4) 72.5
P7 61 Male M Degeneration 6/100 Severe (cat=3) 75
P8 63 Male Malformation 6/75 Severe (cat=3) 75
P9 31 Female Stargardts L/R=6/60 Moderate (cat=2) 77.5

bottom), we re-organized it based on the font size. For example, text with a larger font size, which often provides
more distinctive information, was played at the beginning of the recognition and smaller text at the end.
Finally, to improve the image quality of the system (see Figure 8), we integrated a prepossessing image step

that detected if an image was blurred before sending it to the cloud. The system captured a total of 3 consecutive
images and calculated the Laplacian variance [45] for each of them. If the Laplacian variance of the image is
below a predefined threshold, the image is considered as blurry. The system then submits the image with a higher
result to the server. Additionally, to ensure good user experience, we lengthened the UX sound of the camera.

Participants: We invited 9 participants (2 female) aged between 31 and 72 (M=54.55 SD=16.31). We selected
participants with different eye conditions: 1 Moderate (cat. 2), 2 Severe (cat. 3), 2 Blindness (cat. 4), 2 (Blindness
cat. 5), and 2 Blindness (cat. 6) following WHO vision impairment categories[7]. Further details are in table 2. By
evaluating the device for a variety of eye conditions, we get a broader understanding of what eye conditions
could benefit most from AiSee.

Procedure: The evaluation was divided into 3 different parts and lasted 1.5 hours.

(1) A grocery item and AiSee was given to the participant. The researcher introduced the task and allowed the
participant to practice and familiarize themselves with the device and study procedure.

(2) The participant performed the same recognition task with 20 different items. The items were provided in a
random orientation and order.

(3) Finally, the participant completed a standardized usability questionnaire (SUS [12]), together with a semi-
structured interview to collect qualitative insights on the apparatus.

Informed by the correlation between the accuracy and the object type during the pilot study, we selected a
more diverse subset of items. Our selection consisted of 20 items from a supermarket essentials list, which is a
list of commonly purchased items. We avoided refrigerated items, such as fresh or frozen food, to ensure that
multiple participants could use the same products.

Task: Participants had to perform two tasks per item: (i) describe the item with as much detail as possible, and (ii)
provide the weight or volume details of the product. Within a period of ~2 minutes, the participants were allowed
to trigger the device recognition engine as many times as wanted (# Shots). Also, to better understand the extra
information the device would provide each participant, we collected a baseline for each item before using the
device. The baseline involved performing the same task without the help of any assistive device. During the
task, regardless of the participants’ baseline knowledge of that specific item, they were only allowed to describe
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the object with the information the system provided. This could lead to a situation where the baseline of the
participant is higher than the information AiSee provides.

Data Gathering: The descriptions of each item were post-processed by a researcher and quantified as binary
(1 correct & 0 incorrect). For task(i) to be correct, the description had to be specific and include at least one
item attribute. For example "Tomato Sauce", "Peanut Butter", "Cheese Cracker", "White rice", "High Grain Flour",
"Creamy Potato" or "Coconut Milk", etc. If the participant reported chocolate and the item was cooking chocolate,
the answer was quantified as incorrect. Similarly, task(ii) was quantified as correct only if the participants provided
the exact amount (e.g. 450g). All sessions were videotaped or audio recorded. Additionally, the researcher observed
and took notes during the evaluation. SUS forms and open questions were done verbally and entered through
Google forms. During the evaluation for participant P4, a connection between the motherboard and the electronics
failed, which limited the evaluation of P4 to 7 different items instead of 20. Nevertheless, we were able to collect
all the SUS and collect qualitative feedback on the device.

6.2.2 Results.
Task Baseline: Figure 9 top, shows the percentage of items each of the users were able to describe (task i) and
provide details of the weight and/or volume (task ii), without the device and with the device.

As expected, baseline knowledge is proportional to the vision of the participants. P9, who has a moderate visual
impairment, was able to complete both tasks with almost perfect results. She only faced difficulties with one
product (Chocolate Milk Shake), as the font was relatively smaller than other products. P7 and P8, who had severe
visual impairment, were also capable of accessing and describing the item without significant complications.
However, with P7, his specific disease Macular degeneration, which greater affects the central vision, presented
increased difficulties while getting the product’s details.
Participants with Blindness guessed the category of some items correctly, such as "Potato Chips" or "Rice".

However, they could not provide further details, such as the flavor or type of item. Moreover, on most occasions,
the answers were a pure guess, which often results in incorrect responses. For example, P2 and P3 described the
item, "Tomato Sauce", as "Shower Shampoo".

Task with the Device: Figure 9 top-orange shows the percentage of items the device was able to identify correctly.
These results are independent of the baseline of the participants. Even if the user knows certain information
about the item through the baseline, the only information considered is the one the device provides. Figure 9
bottom, represents the number of shots used to extract the information. This number can also be interpreted as
the needed "effort" to get the information.
On average, across the 20 grocery items, for task (task i), the device succeeded in 93% of the items, with an

average of M = 1.60; SD = 1.09 shots per item. With (task ii), the device succeeded in 67% of the items, with an
average ofM = 2.17; SD = 1.26 shots per item. These results align with the baseline difficulty between tasks. It also
indicates that even though participants exerted higher effort (# shots), this does not correlate with better results.

Usability: Across all participants (see Table 2) the SUS score was M = 70.83; SD = 7.9, which is above the 68 points,
meaning the system is usable. P4 rated the device’s usability consistently lower than other participants, which is
likely due to the device breakdown during P4’s study session. Moreover, we observed a correlation between the
SUS ratings and the eye condition. The average SUS score among totally blind participants (P1 - P4) was M =
63.75 (SD = 5.2). However, for participants with some eye sight (P5-P9) the average score wasM = 76.5 (SD = 3.79).
Across participants, SUS question 6 ("I thought there was too much inconsistency in this system"), and had the

lowest score M = 1.77; (SD = 0.91) – before multiplying by 2.5. Follow-up questions related this inconsistency
with the information provided by the user, which changed based on how the image was framed.
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Fig. 9. Top) Percentage of grocery items described correctly, without the device (baseline) and with the device, for each of
the tasks. Bottom) Average number of shots performed with the device for each task to extract the information.

Framing: By "Framing," we refer to how the participant captured the information within the camera’s field of
view. The participants used a number of different techniques to frame the label of the product to the camera. P5,
P6, P7, P8, and P9 used their residue eyesight to locate the items’ front and back and isolate specific information
if needed. With P5 and P6 (both cat. 4), they used their reduced eyesight to locate the packaging information and
then triggered the device to receive the device’s readout.
The other participants had a stronger dependency on their sense of touch to locate the labels. Furthermore,

participants’ knowledge about grocery items and text were relevant for the task. P1 had extensive practice in
using mobile phone assistive applications, such as KNFB Reader [19] and Seeing-Ai [43], which provided him
with practice in finding the correct labels and frame them in front of the camera. P3, who was blind since birth,
did not give relevance to the orientation of the item and how the camera framed the item. Also, participants
developed this trial-and-error technique to increase performance (e.g., turn the item 90 degrees) and take a shot.

To improve the framing, participants suggested multiple approaches. P6 suggested integrating a laser pointer
to the headset so that he could visualize where the center of the camera is located. P1 recommended incorporating
a continuous image capturing approach, where the user will keep turning the item, while the device captures
multiple images and reconstructs the result. P3 suggested using two cameras, one on each side of the headphones
to capture 3D images instead of 2D images.
P5 compared AiSee with existing mobile phone applications and suggested that AiSee will be much more

suitable for his daily life, given the nature of his work (outdoors construction). He valued the hands-free aspect of
the device. Similarly, P2 compared the system with Seeing-Ai and suggested that for her, our proposed solution
made it easier to frame the item. P7 was also impressed by the accuracy of the system, as other applications he
used had lower accuracy.

Eye Condition Benefit: As seen in figure 9, participants with better eyesight required fewer shots to extract the
information. However, they gained less information from using the device. For instance, P9 (Moderate visual
impairment) was able to describe 95% of the items correctly (task i) and provide 90% of the volume/weight (task ii)
without the device (baseline). Both of them were elevated to 100% when using the device. Although not quantified,
the device also provided the participant with extra information. For example "No added colour, artificial flavors,
and preservatives", "ideal for pickling" or "oven bake". Similarly, in the case of P8, the device helped him realize
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some errors he made while reading the weight using his eyesight. Participants with lower vision (P1, P2, P6) had
to perform more shots to extract the information.
Based on our observations, the “benefit" obtained by using AiSee is dictated by the amount of unknown

information the device provides. Accordingly, with the current system configuration and task, participants with
Moderate visual impairment do not benefit as much as other participants with lower eyesight. Concurrently, the
number of shots performed by the user can be used as a metric to understand the amount of effort needed to
extract the information.

Taking into consideration these facts, we observed that participants belonging to cat. 4, are the ones that could
most benefit from AiSee. For example with P5, whose combined baseline for both tasks was M = 10%. While
using the device, it increased to M = 95% with an average of M = 1.35; SD = .57 shots. More details can be found
in Figure 9.

Feedback: All participants were able to perceive the audio feedback through bone-conduction without any
difficulties, including one of the participants who had hearing loss. At the beginning of the session, participants
were asked to adjust the volume and feedback speed.

The system voice was slightly “broken” in some instances, namely after intensive use for ~3 hours (2 participants
on a row) without breaks. We associate this issue to an increase in the system’s temperature, which triggers a
CPU underclocking routine, thus affecting the performance of the Text-to-Speech engine.

A common mistake between some items was the confusion of letter ‘g’ (grams) and the number ‘nine’, as well
as the letter ‘l’(litre) with the number ‘one’. This error caused the device to say “four thousand five hundred nine”
instead of “four hundred fifty grams”. Interestingly, participants rapidly spotted this error in the feedback and
reported the weight or volume correctly. When later asked, they reported experiencing these errors while using
OCR systems.

6.3 Pilot Deployment in the Wild
Next, we wanted to see how users would experience our assistive device, how they would interact with it in an
actual supermarket, and reveal the potential impact of our system.

We invited one PVI, who was totally blind (cat. 6), aged 42. The participant did not have any previous experience
with the prototype. Before we accompanied him through a local supermarket (see Figure 10), we provided a five
to ten minute introduction on the project and device. The participant was asked to try the device on his own,
picking products of his choice (see Figure 10). To improve the user experience, we also selected some items we
assumed the system would identify on its first attempt. Based on our user evaluation, our average success rate
for blind participants is ~ 88% (see Figure 9). After the supermarket session, the participant had the chance to
discuss his experience, provide suggestions, and articulate wishes. The entire session lasted around an hour.

The participant was capable of interacting with the prototype independently. At least ten objects were taken
off the shelves and successfully identified. The participant was amazed by the ability of our proposed technology
to assist with shopping. The participant stated: "I think it would be wonderful for a person with visual impairments
to be able to have access to that sort of information". The participant also identified the benefit and long-term
impact of this technology to increase the PVI’s level of independence. He said: "I am looking forward to the day
where I can use the device to increase my level of independence, whether it is shopping or getting information most
[things] people would encounter on a day-to-day basis."
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Fig. 10. We conducted an in-the-wild pilot study with one participant using our system in an actual supermarket. On the
right side of the image, there are some examples of the products the participant successfully identified.

7 DISCUSSION

7.1 User Evaluation

Eye condition:Different users present different needs. Similarly, the existing eye condition and the user’s knowledge
are key factors in the usage of assistive technology. In the case of AiSee, we observed a relation between these
parameters and the device’s usability and performance. For example, participants who were born blind had more
difficulties locating the items’ labels than participants who lost their sight over time. Interestingly, although those
born blind knew where the top and bottom of the item were, they did not turn the item to ensure the text was in
the same direction (as done by people not born blind).

Similarly, although users with good residual sight may be unable to read the text present in the label, they can
identify the location of this and extract read it by using the device.

Based on these observations, we argue that AiSee will be more useful for users who have lost their sight, or as
suggested by P7, for those interested in developing a relationship with technology before losing their existing
sight.

Audio quality: Using bone conduction transducers allows the user to listen to information the device provides,
while still having access to external sounds, such as conversations or traffic sounds. Participants did not experience
difficulties with hearing audio feedback during all three evaluations, despite one participant having hearing loss.
During the evaluation, the researcher could adjust the volume and the speed of the feedback based on the

participant’s preferences. Despite this, we foresee that if the user is in a noisy environment, such as the metro,
they could face difficulties hearing the provided information. The user would need to reduce the external noise
by covering their ears or concentrate on the audio in such environments.
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Interaction time: After the evaluation, we asked participants to rate whether the systemwas “too slow" in providing
feedback using a 5-point Likert scale. The results (M=3; SD=1.5) indicated that the usability of the system could
further improve by providing a quicker reply.
While the device can currently run some basic AI models using Tensorflow lite, the performance from the

cloud is considerably better and faster when running larger models. In the past few years, new ASICs have been
developed to enable edge computing and run neural networks on devices. Some examples include NVidia Jetson
Nano4 or the Google Coral Dev Board5. While such hardware is powerful, well documented, and easily accessible
as development boards, it still presents major difficulties when integrating them into wearable devices due to
size, power consumption, and market availability. Substantial efforts have been made to enable rapid prototyping
with these ASICs on wearable devices. MAIX6, or Coral M.2, are some examples. We did not use ASIC when
developing AiSee, as it was not commercially available at the time. However, we envision future versions of
AiSee to embed some of these components to improve the performance and enable on-board processing.

7.2 ImageQuality
As reported by previous research [8, 9], image quality is a crucial aspect to perform an image recognition task.
Figure 8 summarises the different challenges the device faced regarding the image quality.

Image Sharpness: All three evaluated scenarios were indoor scenarios with artificial light and slightly poor lighting
conditions to simulate realistic scenarios (e.g., in a small liquor store). In most cases, the used sensor (Sony
IMX135) was able to extract sharp and high-quality images.

Still, a small subset of captured images were blurry (see Figure 8 Blurred - Left). Blurriness is generally caused
by a combination of low light conditions (long camera exposure duration) and camera movement (user moving
the head). By capturing multiple images and calculating the Laplacian variance [45], we avoided sending blurred
images to the cloud. However, we envision the usage of low-light enhancement algorithm [24, 40, 62] for future
iterations to improve image quality, while in low lighting conditions. We also encountered that some products
generated a light reflection due to their material. These reflections had a considerably negative impact on the
recognition algorithm (see Figure 8 Blurred - Right).

Occlusion: As observed in figure 8, the camera captures the ROI of the user without occlusions. However, in some
instances, the user’s face is on the field of view (see Figure 8 Occlusion). While this does not impair the camera’s
view, on occasions, it could affect the aperture or exposure of it, which could result in lower quality image and so
lower the recognition performance.
During the evaluation, three participants reported wearing glasses (2 while conducting the evaluation). (P2)

wore dark glasses to cover her eyes, (P5) wore sunglasses outdoors to protect from sunlight, and (P9) to correct
astigmatism. The usage of the device did not interfere with the glasses; however, we did observe a slight occlusion
in the camera view among these participants.While in some instances, the user’s hair slightly covered the camera’s
view, the recognition remained unaffected. The camera did not adjust to the focal lens on it.

The placement of the camera was dictated by the relation between discreetness and the field of view of the
camera. A better-located camera will potentially take better images; however, it might be more visible to others,
creating undesirable social barriers. Further iterations should explore reducing the occlusion by placing the
camera slightly further from the users’ face while hiding it through a more elaborated form factor.

4https://developer.nvidia.com/embedded/develop/hardware
5https://coral.ai/
6https://www.sipeed.com/
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Camera Framing: The framing of the camera has a considerable effect on the performance of the system. AiSee
presents two main points of contact of pressure on the head, which are right in front of the ear, where the
transducers are placed. However, having 2 points can lead to a rotation on the device. Across sessions, we
observed some instances where the apparatus slightly twisted on the user’s head, which produced changes to the
camera orientation. The camera would point towards the ceiling and capture small parts of the grocery item (see
Figure 8 Wrong Framing - Left). Future iterations should introduce a 3rd point of contact to avoid this vertical
rotation and increase stability. This contact point could be placed on the back of the neck, together with the
electronics to ensure that the device is held consistently at the right angle.

Another difficulty some users faced while capturing the image was the head’s alignment with the target object.
We designed the device to directly capture the item in front of the user’s face without the need to perform any
non-natural movement, such as bringing the item close to the head or twisting the head. However, we observed
that users understood the camera’s location. In some instances, they attempted to compensate the camera by
turning the head in a non-natural way in an attempt to improve the camera’s framing. However, in most cases, it
resulted in poor image quality (see Figure 8 Wrong Framing - Right).

ROI - Region of Interest: Extracting the region the user is attempting to recognize (Region of Interest) is essential
towards providing a relevant and detailed response to the user. During the iterative process, we defined a natural
interaction of pointing to the bottom left of the object in order to extract the ROI. The chosen approach had
an important role in increasing the algorithm performance across all the images (see Figure 8). Nevertheless,
we did observe some instances where the cropping of the image was not successful, and instead harmful to the
recognition (see Figure 8 Cropping - Right). A possible explanation is that users did not perform the described
interaction and pointed with other methodologies. Alternatively, the trained SSD model (see section 5.2) may
have given a false positive (see Figure 8 Cropping - Left), making the system select the wrong ROI and thus extract
wrong features of the captured image.

Image Processing: The performance of the system was highly dependent on the type of product targeted. Items
with flat surfaces, such as boxes had a significantly higher success rate than other round shape items, such as
cans. Furthermore, some products presented a non-standard and complicated text-font, which made the OCR
algorithm extract the wrong information. For instance, the algorithm reported "pia" instead of "Pizza", "9" instead
of "g", "eleven" instead of "1L", etc. These mistakes are due to the manufacturer’s use of a specific font style (see
Figure 8 – Difficult Products).

We also identified different scenarios where the algorithm provided misleading information to the participants
(see Figure 8 – Confusing Response). During the pilot study, a can called "Wild Elephant," which has a similar look
to a coca-cola can, was wrongly identified a few times and described as coca-cola. These false-positive could be
critical in a real scenario, such as buying an unwanted product. Misleading the user can result in severe problems,
for example, when the user is allergic to certain ingredients.

7.3 Potential Impact
Many well-performing assistive technologies already exist in the market. However, based on the insights extracted
from multiple interviews, we observed a low frequency of use. Often it seems easier to ask others for help than
using an assistive tech. We believe that three of the critical points are: (1) Extended functionalities. Users do not
face difficulties all the time. It is unlikely users will wear a device all day to complete a task that happens at a
specific moment during the day. Therefore, we believe that wearable assistive technology should be presented as
an added functionality to already used devices (e.g. headphones or smartwatch) rather than an independent device.
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(2) Accuracy on the task, the user wants to know specific information, not general information, (3) Discreetness,
users do not want to be targeted as disabled, especially those who are losing their eyesight over time. For example,
P7 mentioned that he does not feel comfortable using his smartphone to perform recognition tasks while he is at
a shop. However, the user suggested that he could use AiSee at the shop without others noticing.

With AiSee, we target these three aspects. We use the latest artificial intelligence algorithms and enable the user
to perform accurate recognition tasks. Our system uses a small ring to trigger the device, and a familiar form factor
(Bone-Conduction-headphones). This does not disrupt the user while performing other tasks, while enabling a
non-intrusive, quick, and discrete micro-interaction. Finally, we integrate these functionalities into a daily used
device, headphones, as they are used all day across multiple applications to play music, perform calls, listen to
GPS directions, or interact with the mobile phone. We believe this type of technology can be transformative for
people with disabilities, empowering them to perform tasks that currently require assistance. However, before
making this technology available to the masses, we understand that there are still vital improvements that need
to be addressed, such as a more ergonomic industrial design, a faster processing unit, etc.

8 CONCLUSION
This paper introduced AiSee, which is an assistive wearable interface that helps people with visual impairment
overcome daily challenges, such as grocery shopping. Through several interviews, we identified some PVI needs
and their pain points with identifying grocery items. In an iterative development process, we developed a high
fidelity wearable prototype. The prototype consisted of a bone-conduction headset with a camera capable of
processing and extracting features such as text, logos, and labels from the captured images. The device, through
the usage of a wearable ring, enabled a simple interaction to perform a recognition task. We evaluated our
prototype in two laboratory studies and in-the-wild. Based on this, we are able to provide several insights on the
usage of our device and identify some of the remaining challenges to overcome. The emergence of AI-technology
is increasing the feasibility of these types of assistive devices, which could potentially create a significant impact
on the visually impaired community.
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